extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C4.10D4) = C24.45(C2×C4) | φ: C4.10D4/M4(2) → C2 ⊆ Aut C22 | 32 | | C2^2.1(C4.10D4) | 128,204 |
C22.2(C4.10D4) = C42.68D4 | φ: C4.10D4/M4(2) → C2 ⊆ Aut C22 | 64 | | C2^2.2(C4.10D4) | 128,263 |
C22.3(C4.10D4) = C42.81D4 | φ: C4.10D4/M4(2) → C2 ⊆ Aut C22 | 64 | | C2^2.3(C4.10D4) | 128,284 |
C22.4(C4.10D4) = C42.4Q8 | φ: C4.10D4/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.4(C4.10D4) | 128,17 |
C22.5(C4.10D4) = C23.C42 | φ: C4.10D4/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.5(C4.10D4) | 128,37 |
C22.6(C4.10D4) = C42⋊C8 | φ: C4.10D4/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.6(C4.10D4) | 128,56 |
C22.7(C4.10D4) = C42⋊3C8 | φ: C4.10D4/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.7(C4.10D4) | 128,57 |
C22.8(C4.10D4) = C23.2M4(2) | φ: C4.10D4/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.8(C4.10D4) | 128,58 |
C22.9(C4.10D4) = (C2×C4)⋊M4(2) | φ: C4.10D4/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.9(C4.10D4) | 128,195 |
C22.10(C4.10D4) = C42.71D4 | φ: C4.10D4/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.10(C4.10D4) | 128,266 |
C22.11(C4.10D4) = C42.83D4 | φ: C4.10D4/C2×Q8 → C2 ⊆ Aut C22 | 64 | | C2^2.11(C4.10D4) | 128,288 |
C22.12(C4.10D4) = (C22×C4).275D4 | φ: C4.10D4/C2×Q8 → C2 ⊆ Aut C22 | 32 | | C2^2.12(C4.10D4) | 128,553 |
C22.13(C4.10D4) = C4⋊C4⋊C8 | central extension (φ=1) | 128 | | C2^2.13(C4.10D4) | 128,3 |
C22.14(C4.10D4) = C23.19C42 | central extension (φ=1) | 64 | | C2^2.14(C4.10D4) | 128,12 |
C22.15(C4.10D4) = C42.7Q8 | central extension (φ=1) | 128 | | C2^2.15(C4.10D4) | 128,27 |
C22.16(C4.10D4) = C42.8Q8 | central extension (φ=1) | 128 | | C2^2.16(C4.10D4) | 128,28 |
C22.17(C4.10D4) = C2×C22.M4(2) | central extension (φ=1) | 64 | | C2^2.17(C4.10D4) | 128,189 |
C22.18(C4.10D4) = C2×C42.2C22 | central extension (φ=1) | 128 | | C2^2.18(C4.10D4) | 128,255 |
C22.19(C4.10D4) = C2×C4.10D8 | central extension (φ=1) | 128 | | C2^2.19(C4.10D4) | 128,271 |
C22.20(C4.10D4) = C2×C22.C42 | central extension (φ=1) | 64 | | C2^2.20(C4.10D4) | 128,473 |