Extensions 1→N→G→Q→1 with N=C22 and Q=C4.10D4

Direct product G=N×Q with N=C22 and Q=C4.10D4
dρLabelID
C22×C4.10D464C2^2xC4.10D4128,1618

Semidirect products G=N:Q with N=C22 and Q=C4.10D4
extensionφ:Q→Aut NdρLabelID
C221(C4.10D4) = M4(2).45D4φ: C4.10D4/M4(2)C2 ⊆ Aut C2232C2^2:1(C4.10D4)128,633
C222(C4.10D4) = C4.C22≀C2φ: C4.10D4/C2×Q8C2 ⊆ Aut C2232C2^2:2(C4.10D4)128,516

Non-split extensions G=N.Q with N=C22 and Q=C4.10D4
extensionφ:Q→Aut NdρLabelID
C22.1(C4.10D4) = C24.45(C2×C4)φ: C4.10D4/M4(2)C2 ⊆ Aut C2232C2^2.1(C4.10D4)128,204
C22.2(C4.10D4) = C42.68D4φ: C4.10D4/M4(2)C2 ⊆ Aut C2264C2^2.2(C4.10D4)128,263
C22.3(C4.10D4) = C42.81D4φ: C4.10D4/M4(2)C2 ⊆ Aut C2264C2^2.3(C4.10D4)128,284
C22.4(C4.10D4) = C42.4Q8φ: C4.10D4/C2×Q8C2 ⊆ Aut C2232C2^2.4(C4.10D4)128,17
C22.5(C4.10D4) = C23.C42φ: C4.10D4/C2×Q8C2 ⊆ Aut C2232C2^2.5(C4.10D4)128,37
C22.6(C4.10D4) = C42⋊C8φ: C4.10D4/C2×Q8C2 ⊆ Aut C2232C2^2.6(C4.10D4)128,56
C22.7(C4.10D4) = C423C8φ: C4.10D4/C2×Q8C2 ⊆ Aut C2232C2^2.7(C4.10D4)128,57
C22.8(C4.10D4) = C23.2M4(2)φ: C4.10D4/C2×Q8C2 ⊆ Aut C2232C2^2.8(C4.10D4)128,58
C22.9(C4.10D4) = (C2×C4)⋊M4(2)φ: C4.10D4/C2×Q8C2 ⊆ Aut C2232C2^2.9(C4.10D4)128,195
C22.10(C4.10D4) = C42.71D4φ: C4.10D4/C2×Q8C2 ⊆ Aut C2264C2^2.10(C4.10D4)128,266
C22.11(C4.10D4) = C42.83D4φ: C4.10D4/C2×Q8C2 ⊆ Aut C2264C2^2.11(C4.10D4)128,288
C22.12(C4.10D4) = (C22×C4).275D4φ: C4.10D4/C2×Q8C2 ⊆ Aut C2232C2^2.12(C4.10D4)128,553
C22.13(C4.10D4) = C4⋊C4⋊C8central extension (φ=1)128C2^2.13(C4.10D4)128,3
C22.14(C4.10D4) = C23.19C42central extension (φ=1)64C2^2.14(C4.10D4)128,12
C22.15(C4.10D4) = C42.7Q8central extension (φ=1)128C2^2.15(C4.10D4)128,27
C22.16(C4.10D4) = C42.8Q8central extension (φ=1)128C2^2.16(C4.10D4)128,28
C22.17(C4.10D4) = C2×C22.M4(2)central extension (φ=1)64C2^2.17(C4.10D4)128,189
C22.18(C4.10D4) = C2×C42.2C22central extension (φ=1)128C2^2.18(C4.10D4)128,255
C22.19(C4.10D4) = C2×C4.10D8central extension (φ=1)128C2^2.19(C4.10D4)128,271
C22.20(C4.10D4) = C2×C22.C42central extension (φ=1)64C2^2.20(C4.10D4)128,473

׿
×
𝔽